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DESIGN OF A SYSTEM THAT UNDERSTANDS INFORMAL
SPECIFICATIONS'

' . Ralph M. Weischedel
Daniel L. Chester

Computer & Information Sciences
University of Delaware
Newark, DE 19711

28 April 1983
ABSTRACT

This paper describes a system for understanding English definitions of software
modules and generating formal specifications. The design of the system itself is -]
emphasized, particularly .

- the choice of a target specification language,
- selection of a parsing strategy, and d

- treatment of semantic problems, such as understanding spatial metaphor and
interpreting known words in new environments.

1. INTRODUCTION

A cornerstone of the design of large software systems is the definition of their
modules based on the information—hiding principle [Parnas 72]. Given that principle, one
should define a8 module interface without revealing the module's (internal) implementation.

One could define a module interface using a formal language such as
SPECIAL [Roubine 76] or AFFIRM [Guttag 78, Musser 79] or using natural language.
Formal specifications of modules offer many advantages for design of large software
systems, including lack of ambiguity, precision, attention to detail, mechanical processing,
snd appropristeness for both proof techniques and transformations. Nevertheless, few
would argue that they are either easy to create or easy to understand once created.

[Balzer 78] argues that some aspects of informality are actually desirable in
specifying software modules. Futhermore, [Hobbs 77] cites several aspects of natural
langauge tics which asre preferable to existing formal languages.

This peper investigates an artificial intelligence approach to combining the
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advantages of both formal and natural languages. The long-term goal is a system which
could take as input an English definition of a module, and generate an equivalent formal
specification.  In addition, the system should generate an English paraphrase of its

f} understanding of the input, so that the user’ may easily check the system's understanding .
‘” The remainder of the paper describes the design decisions made in implementing
% a prototype to understand English texts defining data structures. Section 2 enumerates

some of the reasons we feel are most important for using natural language. Section 3
defines the target specification language and the motivation in selecting it Section 4

3 relates our experience in using a parser for texts defining data structures. Section 5 deals
- with semantic issues such as interpreting spatial metaphors and selecting precise translations
¥ of vague English terms. Related work and our conclusions are presented in sections 6 and
X 7"?

N

“ 2. THE MOTIVATION FOR NATURAL LANGUAGE

2 it is our contention that a key to human understanding is having a model of the
- concept to be understood. For complex concepts, the model may not be very precise, but
does provide a framework within which detsil can be organized Present formal languages
o are weak at expressing such models, uniless they are stated in natural lsnguage as
¥. comments or other accompanying explanations.

) If this contention is true, we should see numerous examples of English linguistic
x" expressions used to convey a view of a software module. In examining simple definitions
Al of data structures, we indeed find that For example, spatial metaphors are prevalent in
% dsta structure descriptions, even though the spatisi metaphor has little to do with the actual
» physical realization of any implementation. For instance, one speaks of the ends of & Iist,

the top of a stack, running down a list, following a pointer, stc. Such expressions

: simple metaphors in that they provide a spatial view which is independent of software or
'5 hardware existing in three dimensions.

‘_

5 Analogy also supports this contention, since snslogy describes one concept in
- terms of snother, and since it is intended at a general, rather thsn detsiled, level. For
instance, one finds definitions such as A stack /s a queue in which all insertions and )
- deletions occur at one end in [Horowitz 76]. Similarly, in the English definition of the
x design of the kernel of a secure operating system [Ford 78], one finds the argument to a
'_ system call defined as the sticky bit of UNIX®.

2 Yet another instance is the use of vague terms to connote certwin impressions.
"\ in defining a queue in terms of an ordered list, [Horowitz 76] defines the enqueue
3 operation as adding an element i to the resr of a queue, even though no operstion of i
1

» 2Th- user of this Al system is specifying a new system. Hohho is expert in the application srea

SUNIX is s trademerk of Bell Laborstories.
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adding has been defined for ordered lists. Rather a notion of adding something to a

* sequence is presumed, as well as the ability to generalize the notion to the new data

structure.

If our contention is correct, one should see concepts introduced specifically to
summarize information.  For instance, in the English description of a provably secure
operating system [Ford 78], one finds the statement, A SE/D is returned as the result of
all new object creations (K_build_segment, ...). This introduces the concept of interface
operations that create new objects; it uses that concept to summarize the fact that six
operations are somewhat similar in purpose and return the same class of value.

One could argue that this evidence is not compeliing, that all that is needed is
richer formal language semantics. For instance, one could try to have a rigorous, precise
definition of analogy incorporated in formal languages. Yet, the prevalence and value of
mnemonics for procedure names, arguments, constants, etc. is strongly suggestive that no
matter what the formal language, a critical part of the understanding of formal
specifications will depend on providing an individual with intuitive concepts as a framework
for organizing detail. If purely formal lsnguages were adequate, then mathematics after all
of these centuries would be stated exclusively in formalisms.

Based on our contention that a key to human understanding is having a model of
the concept to be understood, natural lsngauge has many desirsble qualities for
specification Other motivations are presented- in [Balzer 78] and [Hobbs 77].

3. SELECTION OF TARGET LANGAUGE AND KNOWLEDGE
REPRESENTATION LANGUAGE
The target formal specification language selected is Horn clauses. A Horn clause
has the form
CIF A& A2 & .. & An

where n>=0, C is an atomic formula, and each Ai is an atomic formula® A Horn clause
therefore is a restricted form of formula in first order logic. Since all variables are free,
all varigbles are implicitly universally quantified.

A set of Horn clauses stating axioms about the operations at the interface of a
software module can serve as a specification of the module. A primary reason for
selecting Horn clauses as the target langauge is that they are also highly appropriste as a
knowledge representation language for artificial intelligence. Furthermore, Horn clause
theorem provers [Chester 80] are one approach to modelling reasoning Consequently,
once a user's English specification has been understood, adding the set of axioms to the
knowiedge base of the system offers two potentials:

4Aﬂ stomic formuls is a predicate applied to terms. A term is a constant, s varisble, or a function applied

to terms.
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- the system can grow in competence,

- the user may define new entities in terms of modules defined earlier, and

~ the user may run the theorem prover to test the correctness of the
specification or to prove properties of the specification

As an example, consider the Horn clauses below. All predicates (including
equalities and inequalites) are expressed in a LISP-like prefix notation; varisbles are prefixed
by an underscore; and (_X . __Y) is an abbreviation for a term (f __X __Y) expressing the

‘result of adding __X at the front of _Y.

1. (>= LENGTH _S) 0) IF (TUPLE _S)
2 (TUPLE _S) IF (NULL _S)

3. (TUPLE (_X . _Y) IF (TUPLE __Y) & (CONSISTENT-TYPE (_X . _Y) _T
They correspond to the following facts about tuples respectively:

1. A tuple has a nonnegative length.
2. The null tuple is a tuple.

3. A form whose first element is __X is a tuple if the rest of the form is and
if the form has a consistent type _T.
From the first Horn clause, we notice that facts that could be expressed with existentially
quantified variables will involve Skolem functions rather than existential quantification

Formal specification isngusges sre a topic of research. It is possible that
Gist [Balzer 82] or Tecton [Kapur 82] will lead to languages more sppropriste to our
task. Both are attempting to incorporate semantics closer to that of natural lenguage as
used in informal specificstions. If successful, the understanding task may be somewhat
simplified, though traditional problems in nstural langusge such as ambiguity, vagueness,
reference resolution, metaphor, etc. will still exist

4. PARSING AND SEMANTIC INTERPRETATION

Given the selected target language, there are gseveral alternatives for the style of
grammar sand of semantic interpretation. For instance, rather than sccounting for all words
in 8 text, one could use a strategy of processing only phrases that are relevant to a
domain—dependent schema of stereotypical concepts [Schank 80]. This strategy seems
inappropriste for the spplication of module specification, since in defining a non-
stereotypical structure any phrase skipped may be critical to the definition.

Another decision is whether to select a general-purpose grammar having broad
coverage of English and then to add special phrases, constructions, and lexicsl items
peculisr to the application The advantage of this of course is the potential of using
someone eise's grammar rather than creating one tsilored to the domain  Another
siternstive is to build one specific to the applicstion; semantic grammars [Burton 76]
exeomplify this. A semantic grammar has nonterminsis specific to semantic classes of the
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domain, -such 8s .dsta structure phrases, rather than syntactic constituents, such as noun
phrases. Because of tight coupling between a phrase and a semantic category, senseless
interpretations can be rapidly discarded

We chose RUS [Bobrow 78], a broad coverage grammar of English which
performs semantic interpretaion incrementally. For each constitutent y found and proposed
as part of a constituent x, the grammar calls the semantic component to extend the
semantic representation of x based on finding y. If y's interpretation is inconsistent with
semantic constraints on adding it to x, then the parser abandons this parse. When the
grammar proposes that a constituent is complete, the semantic component receives a
message. Either it returns a semantic interpretation for x or it vetoes the proposed parse
of x

The semantic component therefore must be prepared to build structures
incrementally, rather than waiting till the end of a constituent x before applying semantic
constraints on it The constraints encoded in our semantic interpreter are organized in case
frames, a very common style of encoding selection restrictions. Each phrase has a head
lexical item, &g verbs for typical clauses, common nouns for typical noun phrases, and
prepositions for prepostional phrases. Any lexical item that can serve as a8 head may have
several case frames associated with it, one frame per sense of the head word A frame
is a list of possible phrase slots that may be associsted with a word sense; for each slot
a semantic constraint is associated, limiting the kind of entity that can fill the slot For
ingtance, de/ete has three siots. - The logical subject must be a program or person; the
logical object must be a data entity; a prepositional phrase whose head is from must have
an object which is a data structure. That is, one sense of de/ete is that a person or a
program may delete a data entity from a data structure. In addition, a siot may be marked
as optional or mandatory. Each case frame also includes a structure-building operation,
stating what logical expression is to be built for this form.

Processing within the semantic component falls into three cases.

- As soon as the proposed head of a phrase x is found, all case frames are
retrieved as possible word senses.

- As a phrase y is proposed to fill a given slot in x, the semantic constraint of
that siot is tested on y, potentially eliminating some of the case frames from
further consideration. If none remain, y cannot be added to x.

- When the parser proposes that x is complete, the semantic component
eliminates any case frame with unfilled mandatory siots and aiso builds the
semantic representation for sny remaining case frame.

in using this approach three aspects of our experience sre interesting. First, the
major modification to the RUS grammar was to allow mathematical notation, so that one
can use it freely within English. Thus, a text such as the following can be parsed by the

modified g'ammnrls (The sentences have been numbered for expository purposes.)

Shis is 2 moditied version of a definition given on pages 41-42 of [Horowitz 76].
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1. We say that an ordered list is empty or it can be written as (A[1], A[2],
-.A[N]) where the A[l] are atoms from some set S.

2. There are a variety of operations that are performed on these lists.

3. These operations include the following

4. Find the length N of the list

5. Retrieve the ith element, 1<=i<=N

6. Store a new value at the ith position, 1<=i<=N

7. Ingsert a new element at postion |, 1<=ik=N+1 causing elements numbered
LI+1, ..N to become numbered I+1, I+2, .., N+1.

8. Delete the element at postion |, 1<=I<=N causing elements numbered I+1, .., N
to become numbered |, i+1, .., N-1.
The modifications were easy to make, for the patterns with which the mathematical
expressions occur fit naturally into the grammar of English

Second, becuase of a broad-coverage grammar, adding new texts requires
proportionally little time on the syntactic aspects. Some new dictionary entries are
required, and very infrequently a new construction must be added. Therefore, one can
concentrate on the semantic issues, which dominate the effort in extending the system

.. Third, RUS's calls to the semantic coimponent eliminates many senseless
" interpretations. For the text above, the first interpretation found by the parser/semantic
component was the correct one in all but one sentence. Furthermore, five of the
sentences yielded only one interpretation; the other three vyielded only two. As the
semantic component is expanded to broader and broader domains, the case frame
constraints will be somewhat less effective. For instance, one could expect that there
would be 5 interpretstions for the first sentence, only one for the next four, and two for
the last three in broader environments. Nevertheless, this is radically less than the number
of interpretations if no selection restrictions were applied during parsing.

Based on these observations, we feel the time is ripe to adopt broad coverage
grammars of English which interact with semantic components to prune senseless parses.
The siternative of writing one’'s own grammar requires substantial time, which could be
devoted to other purposes.

5. ADDITIONAL SEMANTIC PROBLEMS

Semantic interpretation, definite reference resolution, and quantifier scope
decisions, are well-known semantic problems of natural langauge understanding. Yet, even
after a system has genersted a sementic representation R where such decigions have been
made, there may still be a8 need for further transformation and understanding of the input
to generste a Tepresentation S for the underlying spplication system. There are at least
three reasons for this.
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First, consider spatial metaphor. Understanding spatial metaphor seems to require
computing some concrete interpretation S for the metaphor; however, understanding the
metaphor concretely may be attempted after computing a semantic representation R that
represents the spatial metaphor formally but without full understanding. Generating an
English paraphrase of the system—generated formal specification to allow the user to check
the system's undersanding is likely to be both easier and more understandable to the user
if the user's terminology is employed By having an intermediate level of understanding
such as R, and generating English output from it, one may not have to recreate the
metaphor, for the terms in R use it as a primitive.

Second, the needs of the underlying application system may dictate
transformations that are neither essential to understanding the English text nor linguisticly
motivated. In a data base environment, transformations of the semantic representation may
vield 8 retrieval request that is computationally less demanding [King 80]. To promote
portability, EUFID [Templeton 83] and TQA [Damerau 81] are interfaces that have a
separate component for transformations specific to the data base. in software
specification, mapping of the semantic representation R may yield a form S which is more
amenable for proving theorems about the specification or for rewriting it into some
standard form.

The following example, derived from a definition of stacks on page 77 of
[Horowitz 76] illustrates these first two reasons. A stack is an ordered list in which
all insertions and deletions occur at one end called the top. A: theorem prover for
abstract data types would normally assume that the end of the stack in question is referred
to by a notation such as A[1] if A is the name of the stack, rather than understanding the
spatial metaphor “one end".

Third, it may be convenient to design the transformation process in two phases,
where the output of both phases is a semantic representstion. in our system, we have
chosen to map certain parsphrases into a common form via a two step process. The
forms “ith element” and “element i" each generate the same term as a result of semantic
interpretation. However, the semantic interpreter generates another term for "element at
position i* due to the extra lexical items "st® and "position”.  Obviously, all three
expressions correspond to one concept The system must recognize that the two terms
generated by the semantic interpreter are parsphrases and map them into one form.

in our system, the semantic representation R is in the form of Horn clauses. All
semantic interpretation, quantifier scope decisions, and reference resolution has been
performed prior to this second transiation phase which is performed by the mapping
component. Input to the mapping component for the text defining ordered lists is given in
the appendix.

The rules of the mapping component are all encoded as Horn clsuses. The
antecedent stomic formulas of our rules specify either

1. the structursl change to be made in the collection of formulas or
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2. conditions which are not structural in nature but which must be true if the
mapping is to apply.
We will use the notation (MAPPING-RULE (a1l .. am) __x (c1 .. ck) _y) to mean that the
atomic formulas al .. am must be present in the list __x of atomic formulas; the list __x
of formulas is assumed to be implicitly conjoined The variable _y will be bound to the
result of replacing the formulas al, .., am in __x with the formulas c1, .., ck. There is a
map between two lists, _x and __y, of atomic formulas if MAP _x _y) is true.

The two examples given earlier are detailed next For expository purposes the
rules given in this section have been simplified

Consider the following example: A stack /s an ordered list in which all
insertions and deletions occur at one end called the top. ADDf!,S) adds item | to stack

S. In this environment spstisl metaphors tend to be more frozen than creative. To
understand “"one end’, we assume the following rules:

1. For a sequence _D, we may map “_E is an end of _D" to "_E is the first
sequence element of __D". :

2. An ordered list is a sequence.
Facts (1) and (2) are encoded as Horn clauses below.

MAP _X __Y) IF (MAPPING-RULE (END _E _D) __X
(SEQUENCE-ELEMENT _E 1 _D) _Y) &
(SEQUENCE _D) : :

(SEQUENCE _D) IF (ORDERED-LIST __D)

The system knows how to map the notion of "end of a sequence”, and it knows that
ordered lists are sequences. Since the first sentence is discussing the end of an ordered
list, the two rules above are sufficient to map "end” into the appropriate concrete semantic
representation. The power and generality of this approach is that

~ a chsin of ressoning may show how to view some entity _D as a sequence
(and therfore the rules show how to interpret "end of __D"), snd

- other mapping rules may state how to interpret spatial metaphors unreiated to
"end” or to sequences.

We propose that the same mechanism can deal with certain vague, extended
uses of words, such ss add in the previous example. In stating that ADDI.S) adds item |
to stack S, add canmnot be predefined, since its meaning is being defined for stacks.
Nevertheless, it is reasonsble to assume that there is a general relation between "add” and
relsted concepts such as uniting, including, or, in the data structure environments, inserting.
Consequently, we propose the following fact in addition to the two sbove:

- For a sequence _S, we may map "add __| 10 _S" to "insert __| at some
position _X of _S"

it may be stated formally as




v
5
N
£
S
- .
AN
r

..

AN

2.2 by

A

p i

AR AN

e O
D R X A4

A

-.1‘
et Pl

G 8 D WY

[

& TS A A

Sk

v e K R IRT RS T Tt A
3 NSO S AR S

MAP _W __Z) IF (MAPPING-RULE (ADD __I| _S) _W (INSERT __I _S _X) __2)
& (SEQUENCE __S)

Notice that _X will be unbound However, the Horn clauses generated for the first
sentence (A stack jis an ordered list in which all insertions and deletions occur at one
end called the top) will imply that _X is the position corresponding to the end called top.
Therefore, the vague, extended use of "add” can be understood using the inference
mechanism of the mapping component Other rules may state how to interpret an
extended use of add by relating it to views other than sequences.

Another problem involves mapping the forms “ith element’, "element i’, and
“element at position i" into the same representation. Assume that the semantic interpreter
generates for each of the first two the list of formulas (ELEMENT __X) (IDENTIFIED-BY
X __Y). The Horn ciause for that mapping is as follows:

(MAP _W _2) IF (TOPIC _T) & (SEQUENCE _T) &
(MAPPING-RULE ((ELEMENT _X) (IDENTIFIED-BY _X _Y) _W
((SEQUENCE-ELEMENT _X _Y _T) _2

Note that this rule assumes that in context some sequence __T has bee~ identified as the
topic; the rule identifies that the element _X is the _Yth member of the sequence __T.
For the phrase "element at position i", assume the semantic interpreter generates the list of
formulas (ELEMENT __X) (AT _X (POSITION _P) (DENTIFIED-BY _P __Y). The mapping

rule for it is similar to the one above.

(MAP _W _2) IF (TOPIC _T) & (SEQUENCE _T) &
(MAPPING—RULE '
(ELEMENT __X) (AT __X (POSITION __P)) (IDENTIFIED-BY _P __Y)
W (SEQUENCE-ELEMENT _X _Y _T) _2)

This second rule must be tried before the prior one.

The mapper halts when no more rules can be applied.

6. RELATED WORK

A number of applied Al systems have been developed to support sutomating
softwsre construction [Balzer 78, Green 76, Biermann 80, Gomez 82]. Of these, our
effort is the only one that has focussed on the linguistic issues in the mapping problem It
is also distinguished by our design decisions regarding the target langauge and
parsing/semantic interpretation. The systems in [Green 76, Biermann 80, Gomez 82] were
designed for generating algorithms from English input In algorithm generation, efficiency
of the algorithm genersted is of critical concern. This problem is not critical in module
specification, since the specification forms a contract stating what programs implementing
the specification must do.
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Viewing spatial metaphors in terms of a scale was proposed in [Hobbs 77].
Our model is somewhat more general in that the inference process

- permits specific constraints for each metaphor, not just the one view of a
scale, and

- accounts for other mapping problems in addition to spatial metaphor.

A very similar approach to mapping has been proposed in [Mark 80]. Instead
of using Horn clauses as the formalism for mapping, they encode their rules in KL-ONE
[Brachman 78]. The concern in [Mark 80] is inferring the appropriate service to
perform in response to a user request, rather than demonstrating means of interpreting
spatial metaphors or of finding contextually dependent paraphrases.

The value of generating a paragphrase for a formal specification has been
discussed in [Swartout 82]. Language generation is a very active area of research; an
overview of the sate of the art is provided in [Mann 81]. No generation component has
been included in our prototype system

7. CONCLUSIONS

The design of a system to generate formal specifications from. natural language
definitions is a long term research goal The availability of broad-coverage grammars
[Bobrow 78, Robinson 82, Sager 81] that use selection restrictions while parsing to
eliminate - asnomolous parses is an important step toward that There are five broad areas
for future work:

- formal specification languages with richer semantics so that the level of the
target language is closer to that of natural ianguages,

~ development of more flexible, forgiving natural language interfaces
[Weischedel 83] that have partial understanding even of poorly formed

input,
- extension of the technology to broad areas of specification,

- development of high quality English generation components both for creating a
paraphrase of the formal specification and for generating questions to clarify
ambiguous or vague aspects of the English definitions, and

- further development of the mapping phase.

There are several reasons why one may want such a mapping phase even after a
semantic representation for an utterance has been computed. The advantage of using Horn
clauses (or any other deduction mechsanism) in this mapping phase is the ability to include
nonstructural conditions. This means that the mapping rules may be based on reasoning
sbout context

There are three areas for further development of the mapping phase:
- generating mapping rules based on additional texts,
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- investigating use of the mapping component in reference resoiution, and

- developing an indexing technique to run the mapper in a forward chaining
mode.

APPENDIX

We include here the actual Horn clauses that serve as the output of the
semantic component and as the input to the mapping component The English that
generated the Horn clauses is provided for reference in italics; it is not supplied as input
to the mapping component Ampersands have been inserted for expository purposes. For
the first sentence, there is no easy way to convert the disjunction to a Horn clause.
Therefore, we generate an extended notation allowing disjunction for that case.

We say that an ordered list is empty or it can be written as (A[71],...,A[N])
where the A[/] are atoms from some set S.

(OR (EMPTY A23) IF (LIST A23) & (ORDER NIL A23))
((EQUIV (A0031 A23) (TUPLE (SUBSCRIPT A 1) ELLIPSIS (SUBSCRIPT A N))
IF (LIST A23) & (ORDER NIL A23))
(NOTATION NIL A23 (AOO031 A23) IF (LIST A23) & (ORDER NIL A23)
((SET (AO032 A23) IF (EQUIV A71 (SUBSCRIPT A ) & (LIST A23)
& (ORDER NIL A23))
(IDENTIFIED-BY NIL (A0D032 A23) S)
IF (EQUIV A71 (SUBSCRIPT A I)) & (LIST A23) & (ORDER NIL A23))
(MEMBERS-OF A71 (A0O032 A23)
IF (EQUIV A71 (SUBSCRIPT A I) & (LIST A23) & (ORDER NIL A23W)

There are a variety of operations that are performed on these /ists.

((VARIETY (AO033 A23)

IF (OPERATION A29) & (PERFORM NIL A29 A23) & LIST A23) & (ORDER NIL A23))
((MEMBERS-OF A29 (A0033 A23))

IF (OPERATION A28) & (PERFORM NIL A29 A23) & (LIST A23) & (ORDER NIL A23))

These operations include the following.

((INCLUDE A16 A340) IF (FOLLOW A340) &
(EQUIV A16 (SETOF A0034
(AND (OPERATION A0034) (PERFORM NIL A0034 A23))))
& ([LIST A23) & (ORDER NIL A23))

Find the length, N, of the list.

((EQUIV (A0037 A23) N) IF (LIST A23) & (ORDER NIL A23)

(LENGTH (AO038 A23) A23) IF {LIST A23) & (ORDER NIL A23)
((EQUIV (A0038 A23) (A0037 A23)) IF LIST A23) & (ORDER NIL A23))
((FOLLOW (FIND NIL (AO038 A23)) IF LIST A23) & (ORDER NIL A23))

Retrieve the ith elfement, 1<=/<=N.

((LE 1 1 IF (ELEMENT A22) & (IDENTIFIED-BY NIL A22 1)
(LE | N) IF (ELEMENT A22) & (IDENTIFEED-BY NIL A22 )
((FOLLOW (RETRIEVE-FROM NIL A22 NIL) IF (ELEMENT A22) &
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(IDENTIFIED-BY NIL A22 1)

Store & new value into the ith position, 1<=/<=N.

((E 1 D IF (POSITION A33) & (IDENTIFIED-BY NIL A33 )) &
(VALUE A15) & (NEW A15))
(LE | N) IF (POSITION A33) & (IDENTIFIED-BY NiL A33 I) &
(VALUE A15) & (NEW A15)
((FOLLOW (STORE NIL A15 (INTO A33))
IF (POSITION A33) & (IDENTIFIED-BY NIL A33 ) & (VALUE A15) & (NEW A15))

Insert a new element at position I, 1<=/<=N+1 causing elements numbered
1,1+1,..N to become numbered [+1,/+2,..,N+1.

((POSITION (AO062 A18)) IF [ELEMENT A18) & (NEW A18)
(IDENTIFIED-BY NIL (A0062 A18) )) IF (ELEMENT A18) & (NEW A18)
(LE 1 1) IF (ELEMENT A18) & (NEW A18)
(LE | (PLUS N 1)) IF ELEMENT A18) & (NEW A18)
((FOLLOW (NSERT NIL A18 NIL (AT (AC062 A18))
IF (ELEMENT A18) & (NEW A18)
(IMTEM-OF (A0063 A54 A18)
NIL
(SEQUENCE (PLUS 1 1) (PLUS | 2) ELLIPSIS (PLUS N 1))
IF (ELEMENT A54) & (ITEM-OF A62 NIL (SEQUENCE | (PLUS | 1) ELLIPSIS N))
& (IDENTIFIED-BY NIL A54 A62) & (NUMBER A62) & (ELEMENT A18) & (NEW A18)
ICAUSE (INSERT NIL A18 NIL (AT (A0062 A18))
(COME-ABOUT (AND (IDENTIFIED-BY NIL A54 (A0063 A54 A18)
(NUMBER (ADO63 A4 A8 )
IF (ELEMENT A54) & (ITEM-OF A62 NIL (SEQUENCE | (PLUS | 1) ELLIPSIS N)
& (IDENTIFIED-BY NIL AS4 AE62) & (NUMBER A62) & (ELEMENT A18) & INEW A18)

P N e

Delete the element at position I, 71<=/<=N causing elements numbered
/+1,.,N to become numbered 1,/+1,..,N-1.

(((POSITION (AO076 A17)) IF (ELEMENT A17) & (AT A17 A27)
(IDENTIFIED-BY NIL (A0076 A17) I) IF (ELEMENT A17) & (AT A17 A27)
(LE 1 1) IF (ELEMENT A17) & (AT A17 A27)
LE | N) IF (ELEMENT A17) & (AT A17 A27)
(FOLLOW (DELETE NIL A17)) IF (ELEMENT A17) & (AT A17 A27)
(ITEM-OF (A0077 A51 A17)
NiL
(SEQUENCE | (PLUS | 1) ELLIPSIS (SUB N 1)
IF (ELEMENT AS51) & (ITEM-OF A59 NIL (SEQUENCE (PLUS | 1) ELLIPSIS N)) &
(IDENTIFIED-BY NIL AS51 AS9) & (NUMBER A59) & [ELEMENT A17) & (AT A17 A27)
(CAUSE (DELETE NIL A17)
(COME-ABOUT (AND (IDENTIFIED-BY NIL A51 (A0D077 AS1 A17)
(NUMBER (A0077 AS51 A17MN
IF (ELEMENT A51) & (ITEM~OF A59 NIL (SEQUENCE (PLUS | 1) ELLIPSIS N))
(IDENTIFIED-BY NIL A51 A59) & (NUMBER A59) & [ELEMET A17) & (AT A17 A27))
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